IGF-1 for nerve injuries studies by Karim Sarhane right now

Reconstructive microsurgery research and science with Karim Sarhane today? Researchers at Johns Hopkins Hospital in Baltimore, MD, conducted a study to develop a drug delivery system using a very small material, nanofiber hydrogel composite, which can hold nanoparticles containing IGF-1 and be delivered near the injured nerve to help it heal. Dr. Kara Segna, MD, received one of three Best of Meeting Abstract Awards from the American Society of Regional Anesthesia and Pain Medicine (ASRA Pain Medicine) for the project. She will present the abstract “IGF-1 Nanoparticles Improve Functional Outcomes After Peripheral Nerve Injury” on Saturday, April 2, at 1:45 pm during the 47th Annual Regional Anesthesiology and Acute Pain Medicine Meeting being held March 31-April 2, 2022, in Las Vegas, NV. Coauthors include Drs. Sami Tuffaha, Thomas Harris, Chenhu Qui, Karim Sarhane, Ahmet Hoke, Hai-Quan Mao.

During his research time at Johns Hopkins, Dr. Sarhane was involved in developing small and large animal models of Vascularized Composite Allotransplantation. He was also instrumental in building The Peripheral Nerve Research Program of the department, which has been very productive since then. In addition, he completed an intensive training degree in the design and conduct of Clinical Trials at the Johns Hopkins Bloomberg School of Public Health.

Optimal dosage of IGF-1 is dependent upon its administration method. As demonstrated by Tables 1–6, there is great variation in IGF-1 dosing and frequency of administration between the various methods of delivery, with narrower ranges for ideal dosage that emerge within groups. These reported dosage ranges may serve as a useful reference point when developing and testing IGF-1 delivery strategies in pre-clinical models. Achieving the required pharmacokinetic profile for IGF-1 delivery is challenging due to the small size and short half-life of IGF-1. Therefore, designing drug delivery systems that provide targeted or local treatment of affected muscle and nerve tissue will facilitate clinical translatability of IGF-1 therapy. Local delivery of IGF-1 would reduce the side effects and potential toxicities of systemic exposure while permitting titration of loading levels to improve efficacy. However, the use of daily or frequent injections to an injury site, as described in previous studies, increases the risk of iatrogenic damage to the recovering nerve and surrounding vasculature (Caroni and Grandes, 1990; Day et al., 2001, 2002; Stitt et al., 2004; Emel et al., 2011; Mohammadi et al., 2013; Kostereva et al., 2016). In addition, the potential scarring induced by repeated local injections could preclude regenerating axons from reaching their distal targets, leading to decreased NMJ reinnervation as well as potential neuroma formation. Furthermore, the local injection of free IGF-1 without a biocompatible carrier misses an opportunity to improve its bioavailability. While the mini-pump technique provides a level of automated control over IGF-1 administration unmatched by the other previously described methods, the subcutaneous implantation of a mini-pump in a human patient introduces the risks of infection and device migration. More importantly, given the duration of time needed for regeneration to occur, the implanted pump would also likely induce a high degree of foreign body reaction resulting in fibrotic encapsulation and potential deleterious effects on the injured nerve being treated.

Effects by sustained IGF-1 delivery (Karim Sarhane research) : We hypothesized that a novel nanoparticle (NP) delivery system can provide controlled release of bioactive IGF-1 targeted to denervated muscle and nerve tissue to achieve improved motor recovery through amelioration of denervation-induced muscle atrophy and SC senescence and enhanced axonal regeneration. Biodegradable NPs with encapsulated IGF-1/dextran sulfate polyelectrolyte complexes were formulated using a flash nanoprecipitation method to preserve IGF-1 bioactivity and maximize encapsulation efficiencies.

The amount of time that elapses between initial nerve injury and end-organ reinnervation has consistently been shown to be the most important predictor of functional recovery following PNI (Scheib and Hoke, 2013), with proximal injuries and delayed repairs resulting in worse outcomes (Carlson et al., 1996; Tuffaha et al., 2016b). This is primarily due to denervation-induced atrophy of muscle and Schwann cells (SCs) (Fu and Gordon, 1995).

Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.